2,068 research outputs found

    On the energy spectrum of strong magnetohydrodynamic turbulence

    Full text link
    The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of MHD turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^3 mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state MHD turbulence to date. We study both the balanced case, where the energies associated with Alfv\'en modes propagating in opposite directions along the guide field, E^+ and $E^-, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, consistent with phenomenological models that include scale-dependent dynamic alignment. For the imbalanced case, with E^+>E^-, the simulations show that E^- ~ k_{\perp}^{-3/2} for all Reynolds numbers considered, while E^+ has a slightly steeper spectrum at small Re. As the Reynolds number increases, E^+ flattens. Since both E^+ and E^- are pinned at the dissipation scale and anchored at the driving scales, we postulate that at sufficiently high Re the spectra will become parallel in the inertial range and scale as E^+ ~ E^- ~ k_{\perp}^{-3/2}. Questions regarding the universality of the spectrum and the value of the "Kolmogorov constant" are discussed.Comment: 13 pages, 10 figures, accepted for publication in Physical Review X (PRX

    Magnetic Discontinuities in Magnetohydrodynamic Turbulence and in the Solar Wind

    Full text link
    Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Delta theta, across fixed spatial increments Delta x in direct numerical simulations of MHD turbulence with an imposed uniform guide field B_0. A large region of the probability density function (pdf) for Delta theta is found to follow an exponential decay, proportional to exp(-Delta theta/theta_*), with characteristic angle theta_* ~ (14 deg) (b_rms/B_0)^0.65 for a broad range of guide-field strengths. We find that discontinuities observed in the solar wind can be reproduced by MHD turbulence with reasonable ratios of b_rms/B_0. We also observe an excess of small angular discontinuities when Delta x becomes small, possibly indicating an increasing statistical significance of dissipation-scale structures. The structure of the pdf in this case closely resembles the two-population pdf seen in the solar wind. We thus propose that strong discontinuities are associated with inertial-range MHD turbulence, while weak discontinuities emerge from near-dissipation-range turbulence. In addition, we find that the structure functions of the magnetic field direction exhibit anomalous scaling exponents, which indicates the existence of intermittent structures.Comment: To appear in Physical Review Letter

    Collaborative public procurement: Institutional explanations of legitimised resistance

    Get PDF
    This paper reports on the barriers to regional collaborative procurement developed from an action research study of five UK public authorities in the emergency services sector. Despite political pressure to procure collaboratively, strategic avoidance responses of institutional logics and symbolic tick boxing legitimise stakeholder resistance to isomorphic forces and entrench operational barriers. The prevailing institutional logics are that regional collaborative procurement is unsuitable and risky, derived from procurement's lack of status and the emotive nature of the emergency services. Symbolic tick boxing is seen through collaboration that is limited to high profile spend categories, enabling organisations to demonstrate compliance while simultaneously retaining local decision-making for less visible, but larger areas of spend. The findings expose choice mechanisms in public procurement by exploring tensions arising from collaborative procurement strategies within, and between, organisations. Multiple stakeholders' perspectives add to current thinking on how organisations create institutional logics to avoid institutional pressure to procure collaboratively and how stakeholders legitimise their actions

    Scaling properties of small-scale fluctuations in magnetohydrodynamic turbulence

    Get PDF
    This is the final version of the article. Available from IOP via the DOI in this record.Magnetohydrodynamic (MHD) turbulence in the majority of natural systems, including the interstellar medium, the solar corona, and the solar wind, has Reynolds numbers far exceeding the Reynolds numbers achievable in numerical experiments. Much attention is therefore drawn to the universal scaling properties of small-scale fluctuations, which can be reliably measured in the simulations and then extrapolated to astrophysical scales. However, in contrast with hydrodynamic turbulence, where the universal structure of the inertial and dissipation intervals is described by the Kolmogorov self-similarity, the scaling for MHD turbulence cannot be established based solely on dimensional arguments due to the presence of an intrinsic velocity scale-the Alfvén velocity. In this Letter, we demonstrate that the Kolmogorov first self-similarity hypothesis cannot be formulated for MHD turbulence in the same way it is formulated for the hydrodynamic case. Besides profound consequences for the analytical consideration, this also imposes stringent conditions on numerical studies of MHD turbulence. In contrast with the hydrodynamic case, the discretization scale in numerical simulations of MHD turbulence should decrease faster than the dissipation scale, in order for the simulations to remain resolved as the Reynolds number increases

    Dynamic Alignment and Exact Scaling Laws in MHD Turbulence

    Full text link
    Magnetohydrodynamic (MHD) turbulence is pervasive in astrophysical systems. Recent high-resolution numerical simulations suggest that the energy spectrum of strong incompressible MHD turbulence is E(k)k3/2E(k_{\perp})\propto k_{\perp}^{-3/2}. So far, there has been no phenomenological theory that simultaneously explains this spectrum and satisfies the exact analytic relations for MHD turbulence due to Politano & Pouquet. Indeed, the Politano-Pouquet relations are often invoked to suggest that the spectrum of MHD turbulence instead has the Kolmogorov scaling -5/3. Using geometrical arguments and numerical tests, here we analyze this seeming contradiction and demonstrate that the -3/2 scaling and the Politano-Pouquet relations are reconciled by the phenomenon of scale-dependent dynamic alignment that was recently discovered in MHD turbulence.Comment: Published versio

    Solitary dynamo waves

    Get PDF
    Abstract Long dynamo waves are a characteristic feature of interface dynamo models with spatially localized α and Ω effects. The evolution of such waves is described by the modified Korteweg-de Vries equation. Solutions to this equation take the form of solitary waves, breathers, and snoidal and cnoidal waves, and represent nonlinear waves of magnetic activity that migrate towards the equator, as observed on the Sun. Averaging techniques extend the theory to longer times and relate the amplitude of these waves to the dynamo number

    Flux expulsion with dynamics

    Get PDF
    In the process of flux expulsion, a magnetic field is expelled from a region of closed streamlines on a TR1/3 m time scale, for magnetic Reynolds number Rm ≫ 1 (T being the turnover time of the flow). This classic result applies in the kinematic regime where the flow field is specified independently of the magnetic field. A weak magnetic ‘core’ is left at the centre of a closed region of streamlines, and this decays exponentially on the TR1/2 m time scale. The present paper extends these results to the dynamical regime, where there is competition between the process of flux expulsion and the Lorentz force, which suppresses the differential rotation. This competition is studied using a quasi-linear model in which the flow is constrained to be axisymmetric. The magnetic Prandtl number Rm/Re is taken to be small, Rm large, and a range of initial field strengths b0 is considered. Two scaling laws are proposed and confirmed numerically. For initial magnetic fields below the threshold bcore = O(UR−1/3 m ), flux expulsion operates despite the Lorentz force, cutting through field lines to result in the formation of a central core of magnetic field. Here U is a velocity scale of the flow and magnetic fields are measured in Alfv´en units. For larger initial fields the Lorentz force is dominant and the flow creates Alfv´en waves that propagate away. The second threshold is bdynam = O(UR−3/4 m ), below which the field follows the kinematic evolution and decays rapidly. Between these two thresholds the magnetic field is strong enough to suppress differential rotation leaving a magnetically controlled core spinning in solid body motion, which then decays slowly on a time scale of order TRm
    corecore